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1. INTRODUCTION:   
The significance of glass properties influenced by network formers and modifiers, particularly in borosilicate 

glasses. Network modifiers, existing as single ions within the cross-linked network, alter properties such as melting 

point, viscosity, and thermal/electrical characteristics [1,2]. This is crucial for the chemical durability of glasses, 

especially in the context of immobilizing high-level radioactive waste (HLW) materials. HLW, generated from 

reprocessed nuclear fuel, contains various actinides and fission products requiring long-term storage in inert host 

materials [3,4]. Borosilicate glasses are favored for this purpose due to their mechanical and chemical resilience. 

Research worldwide focuses on modeling the effects of incorporating radioactive constituents into glass structures, 

determining solubility limits, and studying the durability and stability of potential host materials [5]. 

In recent years, mathematical regression techniques have seen increasing application in glass science [6-11]. These 

methods have been utilized to predict various properties of oxide glasses and to identify material compositions through 

spectroscopic analysis. Typically, Raman spectra contain valuable chemical information alongside baselines and random 

noise. However, these latter components can hinder the accuracy of qualitative substance analysis. Fortunately, 

Regression techniques algorithms offer an effective means of mitigating this issue. The prediction of Raman spectra for 

oxide glasses represents a novel frontier in the field of glass science using machine learning (ML). This study marks the 

first instance of such predictions being reported for Raman spectra of glasses.  In the current study, borosilicate glasses 

with the composition 50SiO2-(15-x)B2O3-20Na2O-10ZnO-5ZrO2-xLa2O3 were investigated. Raman spectra of present 

glasses is examined and predicted using a range of regression techniques        

 

2. DATA SET:  
The prediction of Raman spectra for the current glasses relies on a dataset comprising Raman spectra from 100 

borosilicate samples. Each sample contains approximately 1000 data points, resulting in a total of 100,000 data points 

considered for the regression models in this study. Figure 1 illustrates the Raman spectra of various glass samples from 

the dataset under investigation.  
 

3. REGRESSION TECHNIQUES: 

(a) Decision Tree Regression 

Decision Tree Regression is a non-parametric supervised learning method used for both classification and regression 

tasks. Here, I'll explain Decision Tree Regression specifically for predicting continuous values (regression). 

Abstract:    The present work first time investigates the application of regression  techniques, specifically Support 

Vector Machine (SVM) and Random Forest algorithms, in predicting the Raman spectra of borosilicate glasses 

with the composition 50SiO2-(15-x)B2O3-20Na2O-10ZnO-5ZrO2-xLa2O3. Raman spectra analysis showed shifts 

and intensity changes particularly the conversion of BO3 to BO4 units and shifts in peak intensities and positions, 

indicating modifications in the glass network due to varying La2O3 content. Both SVM and Random Forest 

algorithms exhibited high accuracy in predicting Raman spectra, with precision, recall, and F1 scores ranging 

between 0.958-0.969, 0.967-0.975, and 0.988-0.997, respectively. The Random Forest model, in particular, 

provided highly accurate  predictions (R² = 0.978), outperforming the SVM model (R² = 0.925). These findings 

highlight the potential of regression techniques in advancing glass science for designing glasses tailored to specific 

applications. 
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Mathematical Formulation 

Decision Tree Regression works by recursively partitioning the feature space into regions and predicting the average 

(or weighted average) of the target values of the training samples in each region. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Basic Concept 

Given training data  {(𝑥𝑖, 𝑦𝑖)}
𝑁

𝑖 = 1
  Where 𝑥𝑖 ∈ 𝑅𝑝  are the feature vectors and Where  𝑦𝑖 ∈ 𝑅 are the corresponding 

target values , Decision Tree Regression aims to partition the feature space into disjoint regions 𝑅1, 𝑅2 … … . . 𝑅𝑀    each 

region 𝑅𝑚 is associated with predicted value 𝑦�̂� 

Mathematical Representation: 

The prediction for a new input x using decision tree T can be represented mathematically as:  

�̂� = 𝑇(𝑥)  

Where 𝑇(𝑥)  denotes the prediction for input x using decision tree T 

Splitting Criterion: 

Typically, the splitting criterion in decision trees for regression is based on minimizing the variance of the target values 

in each region. For instance, one common criterion is to minimize the mean squared error (MSE): 

Squared error (MSE) 

MSE=
1

𝑁𝑚
∑ (𝑦𝑖 − 𝑦𝑚̅̅ ̅̅ )2

𝑖∈𝑅𝑚
 

𝑁𝑚 is the number of samples in region 𝑅𝑚 

𝑦𝑖  are the observed values of the target variable 

𝑦𝑚̅̅ ̅̅   is the mean of the target values in region 𝑅𝑚   

 

(b) Random forest  Regression 

A collection of decision trees where each tree gives a prediction and the final prediction is the average (regression) 

or majority (classification) of individual tree predictions. Random Forest Regression is an ensemble learning method 

that constructs multiple decision trees during training and outputs the average prediction of the individual trees for 

regression tasks. Here’s an overview of Random Forest Regression mathematically: 

 

Mathematical Formulation 

Random Forest Regression builds upon Decision Tree Regression by creating an ensemble of decision trees and 

averaging their predictions. Each tree is trained independently on a random subset of the data and a random subset of 

the features. 

Ensemble learning 

Given training data  {(𝑥𝑖, 𝑦𝑖)}
𝑁

𝑖 = 1
    Random Forest Regression creates B decision trees 

𝑇1, 𝑇2…………..𝑇𝐵 

 

Figure 1 Raman spectra of various glass samples 
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Training 

For each tree 𝑇𝑏 (𝑤ℎ𝑒𝑟𝑒 𝑏 = 1,2, … , 𝐵) 

1. Randomly select a subset of the training data (bootstrapping). 

2. Randomly select a subset of features to use for splitting at each node. 

Prediction  

To predict the target value y^ for a new input vector x: 

Aggregate the predictions of all trees Tb: 

𝑦^ = ∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1

 

Mathematical Representation: 

The prediction for Random Forest Regression can be mathematically represented as the average of predictions from 

individual decision trees 

𝑦⏞ =
1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1

 

Where  

𝑦⏞ is the predicted value 

𝑇𝑏(𝑥) Denoted the prediction of the b-th decision tree for input vector x 

B is the number of trees in the forest 

 

Support Vector Regression (SVR): 

Support Vector Regression (SVR) is a regression technique that uses Support Vector Machines (SVMs) to find the best 

fitting line (or hyperplane in higher dimensions) in a high-dimensional feature space. SVR is particularly useful when 

dealing with non-linear relationships between variables. Here's an elaboration of Support Vector Regression 

mathematically: 

 

Mathematical Formulation: 

SVR builds upon the principles of SVM for classification and extends it to regression problems. The goal of SVR is to 

find a function 𝒇(𝒙)that predicts a continuous target variable y based on input features x. 

Basic Concept: 

Given training data  {(𝑥𝑖, 𝑦𝑖)}
𝑁

𝑖 = 1
   

Where 𝑥𝑖 ∈ 𝑅𝑝  𝑎𝑛𝑑  𝑦𝑖 ∈ 𝑅    SVR seeks to find a function 𝑓(𝑥)  

Such that:  

𝑦𝑖 = 𝑓(𝑥𝑖) +∈𝑖  

Where ∈𝑖 are the errors or residuals , subject to certain constraints 

Formulation: 

SVR introduces a margin of tolerance ϵ\epsilonϵ around a fitting hyperplane in the feature space. The basic SVR 

formulation aims to minimize the complexity of the model (i.e., the norm of the weights) subject to the error tolerance 

ϵ\epsilonϵ: 

𝑚𝑖𝑛
𝑤,𝜍,𝜍∗ 

1
2

𝑊𝑇𝑊+𝐶 ∑ (𝜍𝑖+𝜍∗
𝑖)𝑁

𝑖=1
 

Subject to : 

       𝑦𝑖 − 𝑤𝑇𝜙(𝑥 𝑖) − 𝑏 ≤∈ +𝜍𝑖 

          𝑤𝑇𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤∈+𝜍∗
𝑖   

   𝜍𝑖, 𝜍∗
𝑖 ≥ 0 

Where  

𝑤 is the weight vector 

𝑏 is the bias term           

  𝜙(𝑥𝑖) is the feature map (often nonlinear transformations of  𝑥𝑖 )    

 𝜍𝑖𝑎𝑛𝑑 𝜍∗
𝑖  are slack variables that allow for some degree of error 

Dual Formulation: 

SVR can also be formulated in its dual form for computational efficiency: 
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𝑚𝑎𝑥∝,𝛼∗ ∑ (𝛼𝑖
∗ − 𝛼𝑖) −

1

2
∑ (𝛼𝑖

∗ − 𝛼𝑖)(𝑥𝑖. 𝑥𝑗)𝑁
𝑖,𝑗=1

𝑁
𝑖=1   

Subject  to : 

0≤ 𝛼𝑖
∗, 𝛼𝑖 ≤ 𝐶 

∑ (𝛼𝑖
∗ − 𝛼𝑖)𝑦𝑖 = 0𝑁

𝑖=1   

Where 𝛼 and 𝛼∗ are Lagrange multipliers associated with the constraints 

  

4. RESULTS&DISCUSSION:  

4.1 Raman spectra:  

Figure 2 presents the Raman spectra of the glasses under investigation, showing structural changes when Bi2O3 is 

replaced with La2O3. Small peaks around 395-401 cm-1 relate to Zn-O bond stretching in ZnO [9, 12], and peaks around 

924 cm-1 correspond to other ZnO vibrational modes. Peaks around 501-508 cm-1 are associated with Zr-O bond 

stretching in ZrO2 [13], while peaks around 1033 cm-1 may correspond to other ZrO2 vibrational modes [11]. A strong 

peak around 600 cm-1 is linked to the conversion of BO3 to BO4 units in B2O3 [9, 14], with intensity increasing and 

shifting to higher wavelengths when La2O3 is added, confirming structural changes. Peaks around 1164-1210 cm-1  

correspond to other borate group vibrations [9, 15], decreasing in intensity and shifting to lower wavelengths with 

increasing La2O3 content. Peaks around 817-824 cm-1 are assigned to Si-O bond stretching in SiO2 [16], characteristic 

of silica-based glasses. No significant peaks for Na2O were observed, as it acts as a network modifier rather than forming 

strong bonds that contribute to Raman peaks.Raman spectra prediction using Regression learning techniques 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Support Vector Machine (SVM): 

   SVM is a supervised regression  tool that can be used for both classification and regression problems. SVM for 

classification tasks using scikit-learn library in Python.  The prediction of Raman spectra using SVM as follows. The 

experimental Raman spectra data stored of various borosilicate glasses in variables x (wavenumber) and y (intensity), 

the code proceeds to split this data into training and testing sets using the train_test_split function. The test size considers 

as 20% i.e 0.2 of total data which is used for testing of the algorithm, other remaining 80% will be used for training the 

algorithm. A random_stae is set to 42 for best prediction of the current dataset. The features (X_train and X_test) are 

standardized to have a mean of 0 and a standard deviation of 1 using the StandardScaler class. An SVM classifier 

(svm_classifier) is initialized with specified parameters such as the kernel type (kernel='rbf'), regularization parameter 

(C=1.0), and gamma value (gamma='scale'). The Radial Basis Function (RBF) kernel is chosen as it is suitable for 

handling non-linear decision boundaries. The SVM classifier trained on the standardized training data (x_train_scaled 

and y_train) using the fit method. The trained SVM classifier is used to predict labels for the test set (x_test_scaled) 

using the predict method, resulting in predicted labels (y_pred). The classification report function provides various 

parameters such as recall, F1score, precision and support for each test class.  

 Precision is the ratio of correctly predicted positive observations to the total predicted positives. In the output, 

the present code got 0.969 for all classes. This means that for each class, the model successfully make correct positive 
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Figure 2 Raman spectra of Present glass samples  
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predictions out of the total predicted positives. Recall, also known as sensitivity, is the ratio of correctly predicted 

positive observations to the all observations in actual class. Similar to precision, it's displayed as 0.975 for all classes, 

indicating that the model correctly predict positives out of the actual positives for each class. The F1-score, representing 

the harmonic mean of precision and recall, achieves a balance between the two metrics. In the current algorithm, the 

F1-score is 0.997, indicating that both precision and recall are nearly perfect for each class. Support refers to the number 

of actual instances of each class within the specified dataset. In the output, it's a constant value of 0.99 for each class, 

indicating that each class appears only once in the dataset. Accuracy is the proportion of correctly classified instances 

among the total instances.  

 The correlation heatmap in the provided code visualizes the pairwise correlation coefficients between the 

spectral features in the Raman spectra dataset, highlighting the relationships among them. Using sns.heatmap(df.corr(), 

annot=True, cmap='coolwarm', fmt=".2f"), the heatmap shows how each pair of features correlates, with values ranging 

from -1 (perfect negative correlation) to 1 (perfect positive correlation).  

 Figure 3 present the correlation heatmap which shows the precision, recall F1-score, and support.  Figure 4 

presents the experimental verses predicted Raman intensity of the test data.  This plot show the data is consistent with 

experimental values. Figure 5 present the Raman spectra generated from the SVM learning algorithm. The generated 

spectra similar to the experimental Raman spectra. Table 1 present the Raman band assignments from both experimental 

and ML generated. It was also observed from the spectrum that the band assignments similar to the experimental 

assignments and the band related to the BO3 and BO4 units shifting lower and higher wavelengths as present in 

experimental spectrum. Therefore the SVM algorithm successfully predicting the Raman spectra of present glasses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Random Forest Regression  

Random Forest Classifiers are ensemble algorithms constructing multiple decision trees, outputting mode of 

classes for predictions [8,9]. Key steps involve importing libraries for visualization, ML, pandas for data processing, 

scikit-learn for ML tasks like data splitting, feature scaling, training classifiers, and performance evaluation. Raman 

spectral data imports from Excel into a pandas DataFrame, undergoing preprocessing like splitting into wavenumber 

(X) and intensity (y), and visualizing feature correlations with a heatmap. Data splits into training/testing sets with a 

Figure 3 correlation heatmap of SVM 
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Figure 5 Raman spectra generated from the SVM 

learning algorithm 
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specified test size (e.g., 20%) and standardized features using StandardScaler. Evaluation includes precision, recall, F1-

score metrics, possibly saving the model. Precision is 0.958, recall is 0.967, and the F1-score is 0.988 for all classes, 

indicating high accuracy. Each class appears once, with support at 0.97. Accuracy represents the proportion of correctly 

classified instances. Figure 6 presents the fitting random regression with various random states. Figure 7 presents the 

experimental verses predicted Raman intensity of the test data.  This plot show the data is consistent with experimental 

values and random forest classifier is successfully predicting the experimental data. Table 1 provides the Raman 

intensity predicted values obtained from the Random forest. Table 1 clears the experimental data consist with predicted 

data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION:  
The present study has demonstrated the successful synthesis and characterization of glasses with the 

composition 50SiO2-(15-x)B2O3-20Na2O-10ZnO-5ZrO2-xLa2O3 (where x ranges from 0 to 15) using the melt-quenching 

method. The following conclusions can be drawn from the study.Structural changes in the Raman spectra were observed, 

particularly the conversion of BO3 to BO4 units and shifts in peak intensities and positions, indicating modifications in 

the glass network due to varying La2O3 content. SVM successfully predicted Raman spectra and achieved high 

precision (0.969), recall (0.975), and F1-score (0.997) and confirming the effectiveness of SVM in capturing spectral 

features and trends. Random forest classifiers achieved high precision (0.969), recall (0.975), and F1-score (0.997) in 

predicting Raman spectra and produced consistent predictions aligning closely with experimental Raman spectra 

Figure 6 Random forest regression fitting  

 
Figure 7 Predicted band assignments plot  

 

Table 1 Raman band assignments predicted parameters 
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