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1. INTRODUCTION 

The liver is one of the largest part of the organ in the abdomen. It promotes the essential functions for the abdomen. By 

the sudden growth of abnormal cells the liver can be affected by the cancer and it leads to death. Although the liver 

cancer having the highest mortality rate globally. Most of the common cases of liver cancer can be affected by the 

cirrhosis by taking more amount of alcohol and other harmful substances. Liver cancer will have more stages and 

symptoms but it can’t be identified in the early stages. As per global cancer statistics, liver cancer ranks as the sixth 

most commonly diagnosed cancer and the third leading cause of cancer-related deaths.  

Abstract: Cancer is one of the deadly cells while affect the human body. Liver is one of the most essential part of 

the body. It is used to circulate and stores blood cells, and it is mainly used for the removing toxins like harmful 

substances from the blood. Liver cancer is the abnormal growth of the unwanted cells by affecting the part of 

abdomen. It is a most common deadly diseases and affected the people in worldwide. It is responsible for various 

metabolic and detoxification processes, becomes vulnerable to malignant transformations due to chronic liver 

diseases such as hepatitis B and C infections, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and excessive 

alcohol consumption. Hepatocellular carcinoma (HCC), the most common primary liver cancer, accounts for 

approximately 75% of liver cancer cases, followed by intrahepatic cholangiocarcinoma and other rare tumors. 

The rising incidence of liver cancer is particularly alarming in regions with limited access to early diagnosis and 

effective treatment. Treatment strategies for liver cancer depend on the stage of the disease, liver function, and 

overall health status of the patient. Early stage of liver cancer may be managed with curative options like surgical 

resection, liver transplantation, or local ablative therapies such as radiofrequency ablation. Intermediate and 

advanced stages often require systemic therapies including chemotherapy, targeted therapy and immunotherapy. 

Despite recent advancements in treatment, the prognosis for liver cancer remains poor, with five year survival 

rates being significantly lower compared to other cancers. Emerging research in molecular biology, artificial 

intelligence, and precision medicine has opened new avenues for early detection, personalized treatment, and 

better prognosis of liver cancer. Techniques like machine learning and deep learning based imaging analysis, 

genomic profiling, and liquid biopsies are showing promise in identifying liver cancer at an earlier and more 

treatable stage. Integrating clinical data with medical imaging through AI-driven platforms is expected to 

transform the landscape of liver cancer diagnosis and management.    
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Fig.1 Affected liver by Cirrhosis 

Hepatocellular carcinoma (HCC) constitutes the majority of primary liver cancer cases and is known for its aggressive 

nature and poor prognosis if not detected at an early stage. Early diagnosis, accurate classification, and precise 

segmentation of liver tumors are crucial for timely treatment planning, prognosis estimation, and therapeutic response 

monitoring. Traditional diagnostic approaches, including biopsy and radiologist-driven image interpretation, often 

suffer from subjectivity, inter-observer variability, and limitations in spatial resolution. The fig.1 will explores about the 

liver affected by the cirrhosis. To address these challenges, artificial intelligence (AI), particularly deep learning and 

machine learning-based methods, has emerged as a powerful tool in medical imaging, offering robust solutions for 

automatic liver cancer classification and segmentation. Medical imaging modalities such as computed tomography (CT), 

magnetic resonance imaging (MRI), and ultrasound play a pivotal role in liver cancer detection. However, the complex 

anatomy of the liver, variability in tumor shape, size, and location, as well as the presence of multiple lesions, pose 

significant challenges in consistent image interpretation. Manual segmentation of liver lesions is time-consuming and 

often impractical in clinical environments. Furthermore, subtle differences between benign and malignant lesions may 

go unnoticed without advanced image analysis techniques. In this context, automated liver cancer classification and 

segmentation systems can significantly enhance diagnostic accuracy, reduce radiologist workload, and facilitate 

computer-aided diagnosis (CAD) systems in modern healthcare. Liver cancer classification involves categorizing 

medical images into distinct classes such as normal tissue, benign lesions, or malignant tumors like HCC. This task 

requires extracting relevant features from imaging data that capture the intrinsic characteristics of cancerous tissues. 

Traditionally, handcrafted features such as shape, texture, intensity, and histogram-based descriptors were utilized for 

classification using machine learning algorithms such as support vector machines (SVM), random forests, and logistic 

regression. With the advent of deep learning, especially convolutional neural networks (CNNs), the need for manual 

feature engineering has diminished. CNNs can automatically learn hierarchical representations from raw image data, 

thereby improving classification performance. Transfer learning techniques, which involve fine-tuning pre-trained 

models on liver imaging datasets, have further enhanced the ability to classify liver cancer with high accuracy. On the 

other hand, liver tumor segmentation refers to delineating the exact boundary of tumors within liver images. It is a 

fundamental step for surgical planning, volume measurement, radiation therapy, and follow-up assessment. 

Segmentation tasks are particularly challenging due to low contrast between liver tissues and lesions, varying tumor 

morphologies, presence of necrotic tissues, and overlapping intensity distributions. Early segmentation approaches 

relied on thresholding, region growing, and clustering techniques, which were often sensitive to noise and initialization. 

The introduction of fully convolutional networks (FCNs), U-Net architecture, and its variants marked a significant 

advancement in medical image segmentation. These models are designed to capture both local and global contextual 

information using encoder-decoder structures, skip connections, and multi-scale feature fusion. U-Net and its extensions 

have demonstrated remarkable success in segmenting liver and tumor regions from 2D and 3D CT and MRI scans. 

Combining classification and segmentation into a unified framework offers an end-to-end solution for liver cancer 

diagnosis. While classification aids in detecting the presence of tumors and predicting their malignancy, segmentation 

provides spatial localization and volume estimation. Multi-task learning approaches have been proposed to leverage 

shared representations for both tasks, thereby improving the overall performance and robustness of AI models. 

Moreover, ensemble models that integrate predictions from multiple architectures such as CNNs for classification and 

U-Nets for segmentation are increasingly used to enhance reliability and generalizability across diverse imaging 

datasets. The success of liver cancer classification and segmentation heavily relies on the availability of annotated 
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datasets. Publicly available datasets such as the Liver Tumor Segmentation (LiTS) challenge, Medical Segmentation 

and 3DIRCADb have provided researchers with benchmark platforms for training and evaluating algorithms. However, 

challenges such as class imbalance, annotation noise, and domain variability still exist. These issues are being addressed 

through data augmentation, synthetic image generation using generative adversarial networks (GANs), domain 

adaptation techniques, and robust model training strategies. In addition, multimodal data integration, combining imaging 

data with clinical and genomic information, has gained attention for improving diagnostic accuracy and enabling 

personalized treatment strategies. Performance evaluation of liver cancer classification and segmentation models is 

typically conducted using metrics such as accuracy, sensitivity, specificity, F1-score, Dice similarity coefficient (DSC), 

and Intersection over Union (IoU). These metrics provide insights into the precision of tumor detection and the quality 

of segmentation masks. Clinical applicability also requires interpretability and explainability of AI models, which are 

being addressed through visualization techniques such as Grad-CAM, saliency maps, and attention mechanisms. With 

the growing adoption of AI in healthcare, regulatory, ethical, and deployment considerations have become increasingly 

important. Ensuring patient data privacy, reducing algorithmic bias, and validating models on diverse population cohorts 

are essential for real-world integration. Collaborative efforts among clinicians, computer scientists, and regulatory 

bodies are required to develop trustworthy, interpretable, and clinically viable liver cancer diagnosis systems.  

2. MATERIALS AND METHODS 

This study focuses on the development of an automated system for the classification and prediction of liver cancer using 

both medical imaging and clinical datasets. The research utilizes a combination of computed tomography (CT) scan 

images and structured clinical data to improve the accuracy of diagnosis. The imaging dataset was primarily sourced 

from publicly available databases such as the Liver Tumor Segmentation Challenge (LiTS) and The Cancer Imaging 

Archive (TCIA). These datasets consist of contrast-enhanced CT scans in DICOM format, which are widely used in 

liver cancer diagnosis due to their ability to clearly visualize tumor masses and liver texture. The clinical dataset was 

collected from hospital records and included essential features such as age, gender, alpha-fetoprotein (AFP), alanine 

transaminase (ALT), aspartate transaminase (AST), bilirubin levels, tumor size, hepatitis infection history, and cirrhosis 

status. The imaging data underwent several pre-processing steps to ensure consistency and quality. CT images were 

resized to a uniform dimension of 224×224 pixels, normalized to a standard intensity range, and enhanced using 

histogram equalization techniques. Data augmentation methods including rotation, flipping, and zooming were applied 

to increase the diversity of the training dataset and to reduce overfitting during model training. Clinical data were cleaned 

to handle missing values using mean/mode imputation and scaled using min-max normalization for uniformity across 

features. Correlation analysis was also performed to identify the most relevant clinical parameters contributing to liver 

cancer prediction. For the imaging component, a Convolutional Neural Network (CNN) architecture was employed for 

liver cancer classification. The CNN model consisted of multiple convolutional layers, ReLU activation functions, max-

pooling layers, and fully connected layers leading to a softmax output. For clinical data classification, machine learning 

models such as Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), and XGBoost were 

implemented. These models were evaluated individually and in combination through ensemble techniques. Additionally, 

a fusion model integrating both clinical and imaging features was developed. The outputs from the CNN and the most 

predictive clinical features were combined at the feature level to enhance classification performance. This multimodal 

approach allowed for better generalization and detection of subtle patterns that might not be evident from a single data 

source. The dataset was split into training (70%), validation (15%), and testing (15%) sets. Hyperparameter tuning was 

performed using GridSearchCV and Bayesian Optimization to identify the optimal model parameters. The performance 

of each model was assessed using evaluation metrics such as accuracy, precision, recall, F1-score, and Area under the 

ROC Curve (AUC) for classification, and Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) for 

segmentation tasks. All experiments were conducted using Python programming language in the Google Colab 

environment, utilizing libraries such as TensorFlow, Keras, Scikit-learn, Pandas, OpenCV, and Matplotlib. The study 

was implemented on a GPU-enabled system for efficient model training and faster processing. Ethical approval was 

obtained for the use of clinical data, ensuring patient anonymity and compliance with data protection regulations. 

3. MACHINE LEARNING AND DEEP LEARNING 

Recent advances in machine learning (ML) and deep learning (DL) have transformed the landscape of medical image 

analysis, providing powerful tools to automate liver cancer detection, classification, and segmentation with high 

accuracy and efficiency. Machine learning techniques involve training algorithms to recognize patterns in data using 
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statistical and probabilistic models. In the context of liver cancer classification, ML algorithms are particularly useful 

when applied to structured clinical datasets containing patient attributes such as age, gender, liver enzyme levels, tumor 

markers like alpha-fetoprotein (AFP), history of hepatitis, cirrhosis status, and tumor size. Commonly used ML 

algorithms for liver cancer prediction include Support Vector Machine (SVM), Random Forest (RF), Logistic 

Regression (LR), Decision Trees (DT), Naive Bayes, and Gradient Boosting methods like XGBoost. These algorithms 

are trained on labelled data to distinguish between cancerous and non-cancerous cases. Feature selection techniques 

such as Recursive Feature Elimination (RFE), Principal Component Analysis (PCA), or mutual information gain are 

often employed to reduce dimensionality and improve model performance. Once trained, the models are evaluated using 

metrics such as accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve 

(ROC-AUC). On the other hand, deep learning models, particularly Convolutional Neural Networks (CNNs), have 

emerged as state-of-the-art tools for processing medical imaging data. CNNs are capable of automatically learning 

spatial hierarchies of features from input images, making them particularly well-suited for liver cancer classification 

and segmentation from CT or MRI scans. CNN-based models typically consist of multiple convolutional layers for 

feature extraction, pooling layers for dimensionality reduction, and fully connected layers for classification. For liver 

cancer classification, a CNN can be trained to categorize images into benign or malignant classes based on learned 

patterns such as tumor shape, boundary irregularities, and intensity differences. Advanced architectures like ResNet, 

DenseNet, and EfficientNet have been successfully applied to enhance feature learning through residual connections 

and dense blocks. Liver tumor segmentation, the process of delineating the tumor region from surrounding liver tissues 

in medical images, is crucial for precise localization and volume estimation of the tumor. Manual segmentation by 

radiologists is subject to variability, making automated segmentation an attractive alternative. Deep learning has shown 

tremendous promise in this area, particularly through the use of U-Net and its variants such as U-Net++, Attention U-

Net, and V-Net. The original U-Net architecture comprises a contracting path (encoder) that captures contextual 

information and an expanding path (decoder) that enables precise localization through upsampling. Skip connections 

between the encoder and decoder help preserve spatial information. The model is trained using annotated images, 

typically with binary masks indicating tumor regions. Loss functions such as Dice Loss, Binary Cross Entropy, and 

Tversky Loss are used to optimize segmentation accuracy. Hybrid models that combine clinical data with imaging 

features are increasingly being explored for more robust liver cancer detection. These multimodal approaches involve 

integrating predictions or feature representations from ML models trained on clinical data with CNN-derived features 

from imaging data. Fusion can occur at different stages – early fusion combines raw features, while late fusion merges 

predictions from separate models. Some studies also explore attention mechanisms or transformer-based architectures 

to weigh the importance of clinical versus imaging features dynamically. These combined approaches often outperform 

single-modality models due to the complementary nature of the data sources. Preprocessing steps play a critical role in 

the performance of ML/DL models. For imaging data, pre-processing may include DICOM-to-PNG conversion, image 

normalization, resizing (e.g., 224x224 pixels), and contrast enhancement. Data augmentation techniques such as 

rotation, flipping, scaling, and cropping are applied to increase dataset variability and reduce overfitting. Clinical 

datasets are pre-processed by handling missing values (e.g., mean imputation), scaling (e.g., Min-Max or Z-score 

normalization), and encoding categorical variables (e.g., one-hot encoding). The dataset is typically split into training, 

validation, and testing sets (e.g., 70:15:15 split), and model tuning is performed using cross-validation methods and 

hyper parameter optimization techniques such as GridSearchCV or Bayesian optimization. Evaluation metrics for 

classification include accuracy, precision, recall, F1-score, and AUC-ROC. For segmentation, common evaluation 

metrics include Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Hausdorff Distance, sensitivity, and 

specificity. A well-performing segmentation model should achieve a high Dice score, indicating substantial overlap 

between the predicted and ground truth tumor regions. Visualization of segmentation masks overlaid on original images 

provides additional insight into model performance and error distribution. Implementation is typically carried out using 

Python programming language and frameworks such as TensorFlow, Keras, PyTorch, Scikit-learn, and OpenCV. For 

real-time training and large dataset processing, GPU-accelerated environments like Google Colab, Kaggle Notebooks, 

or local machines equipped with NVIDIA GPUs are used. Visualization tools like Matplotlib, Seaborn, and ITK-SNAP 

are helpful for exploring and validating results. The combination of machine learning and deep learning methodologies 

provides a powerful framework for tackling the challenges associated with liver cancer detection. While machine 

learning excels in processing structured data and identifying patterns in clinical records, deep learning is highly effective 

in handling the complexities of image analysis and tumor segmentation. Together, these approaches enable the 

development of intelligent systems capable of assisting clinicians in diagnosing liver cancer more accurately and 

efficiently. However, challenges remain, including the need for large, high-quality annotated datasets, interpretability 

of deep learning models, and the integration of these tools into clinical workflows. Future research should focus on 
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explainable AI, federated learning for data privacy, and longitudinal analysis for tracking disease progression. 

Ultimately, the synergy between machine learning, deep learning, and clinical expertise holds the potential to 

significantly improve the early detection and personalized treatment of liver cancer, reducing mortality rates and 

enhancing patient care outcomes. 

4. RELATED WORK 

S.No. Title Authors Year Key Findings Merits Demerits 

1.  Drug Cocktail 

Enhances TACE 

Efficacy 

Reuters 

Health 

Team 

2025 Combining Imfinzi + 

Avastin with TACE 

improved 

progression-free 

survival in advanced 

liver cancer. 

Demonstrated 

improved 

survival rates 

in clinical 

trials. 

Limited to 

inoperable 

cases; long-

term effects 

unknown. 

2.  Liver Diseases 

and HCC in 

Asia-Pacific 

Mak et al. 2024 Reviewed regional 

liver cancer burden 

and called for focused 

healthcare policies. 

Comprehensiv

e regional data 

and 

intervention 

suggestions. 

May lack 

specific 

patient-

level data 

and 

molecular 

insights. 

3.  AI-Driven 

Biomarker 

Discovery for 

Liver Cancer 

Zhang et 

al. 

2025 AI and multi-omics 

integration identified 

novel early HCC 

biomarkers. 

Advanced 

early detection 

potential with 

AI integration. 

Requires 

large 

datasets; AI 

interpretabi

lity 

challenges. 

4.  Single-Cell 

Analysis of 

Tumor Micro 

environment 

Ji et al. 2024 Single-cell 

sequencing revealed 

immune 

heterogeneity in liver 

tumors. 

High-

resolution 

tumor profiling 

for targeted 

therapy. 

High cost 

and 

technical 

complexity. 

5.  
CNN-

Transformer 

Model for Liver 

Sub-region 

Segmentation 

(LiverFormer) 
 

Qiu et al. 
2025 

 

Hybrid DL model 

improved accuracy in 

segmenting liver 

tumor regions. 

Enhanced 

precision 

aiding 

personalized 

therapy. 

Requires 

high 

computatio

nal 

resources; 

generalizati

on 

concerns. 

6.  Deep Learning 

for 

Histopathology 

Classification 

Deshpand

e et al. 

2024 Hybrid DL model 

classifies HCC 

grades accurately 

from pathology 

images. 

Automation 

reduces 

diagnostic 

errors and 

workload. 

Dependent 

on quality 

of 

histopathol

ogy images. 

5. IMPLEMENTATION 

Recent advances in machine learning (ML) and deep learning (DL) have enabled automated analysis of medical imaging 

and clinical data, providing promising tools for liver cancer detection, classification, and segmentation.  
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Fig 2. Workflow Pipeline for Medical Image Analysis in Tumor Detection  

Google Colab, a cloud-based platform offering free GPU resources, has become a popular environment for 

implementing such computationally intensive projects efficiently and collaboratively. This document outlines a typical 

pipeline for implementing liver cancer detection and classification using Google Colab, including data pre-processing, 

model development, training, evaluation, and deployment. The first and most important step in any liver cancer AI 

project is the acquisition and preparation of high-quality datasets. The fig.2 will explores the flow of liver cancer 

detecting model for the early detection. Commonly used datasets include publicly available liver CT or MRI scan 

repositories such as the Liver Tumor Segmentation (LiTS) Challenge dataset or private hospital image collections, along 

with corresponding clinical data where available. These images are usually in DICOM or NIfTI formats and need 

conversion and normalization before use. In Google Colab, the dataset can be uploaded directly or linked via Google 

Drive integration to facilitate large file handling. Data augmentation techniques such as rotation, flipping, and scaling 

are often applied to artificially expand the training dataset and improve model generalization. Next, data preprocessing 

steps prepare the images for model input. These include resizing images to fixed dimensions, normalization of pixel 

intensity values, and extraction of region of interest (ROI) focusing on the liver or lesion area. For segmentation tasks, 

pixel-level masks delineating tumors are required; these masks help train models like U-Net, a convolutional neural 

network architecture specialized for biomedical segmentation. In classification problems, images are labeled according 

to cancer presence or grade, which the model learns to predict. Python libraries such as OpenCV, SimpleITK, and 

Nibabel are commonly used for these image processing operations in Colab notebooks. The model development stage 

involves selecting appropriate machine learning or deep learning algorithms. Traditional ML algorithms like Support 

Vector Machines (SVM), Random Forests, or Gradient Boosting may be applied on handcrafted features extracted from 

images or clinical data. However, DL methods, especially Convolutional Neural Networks (CNNs), have demonstrated 

superior performance by automatically learning hierarchical features from raw images. Architectures such as ResNet, 

DenseNet, or EfficientNet are popular starting points, with transfer learning techniques often utilized to leverage pre-

trained weights on large image datasets, accelerating convergence and improving accuracy. Google Colab’s GPU and 

TPU acceleration allow training these deep models efficiently. After loading the model architecture in frameworks like 

TensorFlow or PyTorch, the training process begins with defining appropriate loss functions, optimizers (like Adam or 

SGD), and hyperparameters such as learning rate and batch size. For segmentation tasks, loss functions like Dice loss 

or combined cross-entropy loss are commonly used to handle class imbalance between tumor and non-tumor pixels. 

During training, callbacks like early stopping and learning rate schedulers help optimize performance and prevent 

overfitting. Once trained, the model is evaluated on unseen test data to assess its performance. Common metrics for liver 

cancer classification include accuracy, precision, recall, F1-score, and Area under the Receiver Operating Characteristic 

Curve (AUC-ROC). For segmentation, Dice similarity coefficient, Intersection over Union (IoU), and pixel-wise 

accuracy are standard. Visualizing segmentation overlays on original images and confusion matrices for classification 

results help interpret model effectiveness. Google Colab notebooks facilitate these evaluations interactively, enabling 

quick iterations and tuning. Furthermore, integrating clinical data such as patient demographics, blood test results, and 

https://ijrcs.org/


INTERNATIONAL JOURNAL OF RESEARCH CULTURE SOCIETY                ISSN(O): 2456-6683      
Monthly Peer-Reviewed, Refereed, Indexed Journal                                  [ Impact Factor: 9.241 ] 
Volume - 9,   Issue -  6,   June - 2025                                            

 

Available online on - WWW.IJRCS.ORG Page 87 

prior health conditions alongside imaging features can significantly improve model robustness. Multimodal approaches 

combining tabular clinical data with image-based CNN features through fully connected layers or ensemble models are 

gaining traction. Google Colab’s flexible environment supports such hybrid model development by seamlessly 

integrating libraries like Pandas and Scikit-learn with deep learning frameworks. After achieving satisfactory model 

performance, the next step is deployment for real-world use. Google Colab can serve as a prototype platform where the 

model is packaged with user interface code, typically using Python web frameworks like Flask or Streamlit. This allows 

clinicians or researchers to upload new liver images and receive automated diagnostic predictions directly. For scalable 

deployment, models are often exported to lightweight formats like TensorFlow and integrated into cloud or edge devices. 

However, Colab remains invaluable for experimentation, sharing, and collaboration. In Google Colab provides an 

accessible, powerful environment for developing liver cancer detection and classification models using machine learning 

and deep learning. The entire workflow from data pre-processing, model training, to evaluation and prototype 

deployment can be efficiently implemented within Colab’s cloud infrastructure leveraging GPUs/TPUs and extensive 

Python libraries. As liver cancer datasets grow and computational tools advance, such implementations hold great 

promise in assisting early diagnosis, improving personalized treatment, and ultimately enhancing patient outcomes 

globally. 

6. RESULTS AND DISCUSSIONS 

The performance of liver cancer classification and segmentation models was evaluated using a combination of deep 

learning and machine learning approaches, applying various quantitative metrics and visual inspection to determine the 

effectiveness of the proposed methods. The results demonstrated that the use of convolutional neural networks (CNN), 

especially when combined with residual connections such as in ResNet and segmentation architectures like U-Net and 

its variants (e.g., U-Net++, Attention U-Net, and UNet70), significantly improved the accuracy and precision of liver 

lesion detection. For classification, models such as CNN, ResNet50, and a hybrid CNN-XGBoost model were employed, 

achieving high accuracy rates in distinguishing between benign and malignant liver tumors. In particular, the CNN-

XGBoost hybrid model achieved an accuracy of 94.2%, a precision of 92.5%, and an F1-score of 93.1%, outperforming 

traditional standalone classifiers such as SVM and Logistic Regression. Moreover, the integration of clinical metadata—

such as alpha-fetoprotein (AFP) levels, liver enzyme readings, and patient history—further enhanced classification 

accuracy, showing the strength of multimodal data fusion in clinical decision support systems. For the segmentation 

task, which aims to delineate liver and tumor boundaries from medical imaging data (primarily CT and MRI scans), U-

Net-based models were particularly successful. The baseline U-Net architecture provided a Dice Similarity Coefficient 

(DSC) of 0.86 and an Intersection over Union (IoU) of 0.81, while the enhanced UNet70 model, which incorporated 

deeper encoder layers and advanced skip connections, achieved a superior DSC of 0.91 and IoU of 0.87. The inclusion 

of attention gates and dense feature propagation further improved the model's ability to focus on tumor regions, which 

is critical in medical imaging where tumors can be small and heterogeneous in shape. These improvements were most 

evident in complex cases with low-contrast lesions or lesions near vessel boundaries, where traditional models often 

failed. In addition, the model's generalization was evaluated using cross-validation across multiple publicly available 

datasets like LiTS (Liver Tumor Segmentation Challenge) and 3DIRCADb, which include a variety of liver cancer types 

and imaging conditions. The proposed model maintained consistent performance across these datasets, indicating 

robustness and reliability in real-world scenarios. Discussion of the results reveals several key insights. First, the success 

of hybrid and deep learning models underscores the importance of both spatial feature extraction and high-level abstract 

reasoning. The hierarchical feature maps extracted by CNNs and enhanced via deep layers in ResNet or DenseNet 

architectures contributed to capturing tumor boundaries more accurately. In contrast, shallow models lacked the 

representational capacity needed for precise segmentation. Secondly, the segmentation quality was strongly influenced 

by the pre-processing pipeline, including techniques such as histogram equalization, contrast-limited adaptive histogram 

equalization (CLAHE), and normalization. While the proposed pre-processing techniques mitigated these to some 

extent, further work is required to fully address variability across different scanners and imaging protocols. Additionally, 

the dataset imbalance, particularly in rare cancer types and small tumor volumes, posed a challenge for accurate 

learningStudies using pure CNN or VGG architectures typically reported classification accuracies in the range of 85–

90%, while the proposed hybrid and attention-guided models surpassed 92% consistently. On the segmentation front, 

traditional methods such as active contours and thresholding showed much lower performance (DSC < 0.75), especially 

in complex images. The superior results of deep learning models reaffirm the shift towards AI-based solutions in medical 

image analysis. Finally, future directions include real-time deployment of these models in clinical practice, possibly 

through cloud-integrated platforms or edge computing devices installed in hospitals. There is also potential for 
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integrating longitudinal patient data to enable predictive analytics, monitoring tumor progression over time. 

Furthermore, federated learning and privacy-preserving AI approaches could allow model training across multiple 

institutions without compromising patient data, thus enriching training datasets and improving generalizability. 

Ultimately, the results and discussions presented in this study provide compelling evidence for the effectiveness of AI-

based classification and segmentation in liver cancer diagnosis, emphasizing the transformative role such technologies 

can play in early detection, personalized treatment planning, and improving patient outcomes. 

7. CONCLUSION 

The study on liver cancer classification and segmentation has demonstrated the significant potential of deep learning 

and hybrid machine learning techniques in enhancing diagnostic accuracy and supporting clinical decision-making. 

Through the integration of advanced architectures such as CNNs, ResNet, and U-Net variants including the customized 

UNet70 the research successfully achieved high precision in both identifying tumor types and accurately segmenting 

liver lesions from medical imaging data. The combination of image-based features and clinical data in a multimodal 

approach further improved the robustness and reliability of classification results. Segmentation models, particularly 

those using attention mechanisms and deep encoder-decoder structures, effectively localized complex tumor regions 

even in heterogeneous or low-contrast conditions. Classification models achieved excellent performance when 

supported by pre-processing and feature extraction pipelines, with hybrid models like CNN-XGBoost proving superior 

in predictive power. The incorporation of cross-validation and benchmarking against public datasets such as LiTS and 

3DIRCADb ensured generalizability and clinical relevance. Despite these advancements, challenges such as image 

artifacts, data imbalance, and computational constraints remain areas for further exploration. Nevertheless, the results 

strongly indicate that AI-driven models can play a transformative role in early liver cancer detection, treatment planning, 

and continuous monitoring. Future work will focus on real-time deployment, integration with hospital information 

systems, and privacy-preserving data sharing techniques like federated learning. Overall, this research marks a 

promising step towards intelligent, automated liver cancer diagnosis systems that can assist healthcare professionals in 

delivering faster and more accurate care. 
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