

DOIs:10.2017/IJRCS/202508009

--:--

Research Paper / Article / Review

ISSN(O): 2456-6683

[Impact Factor: 9.241]

Causes of Mathematics Phobia among Secondary School Students in Pynursla C&RD Block

¹ Wanshailang Khongstid, ² Dr. Euodia B. Myrthong, ³ Bashanlang Pariong

- ¹ Research Scholar, Department of Education, North-Eastern Hill University, Shillong, Meghalaya
- ² Assistant Professor, Department of Education, North-Eastern Hill University, Shillong, Meghalaya
- ³ Research Scholar, Department of Education, North-Eastern Hill University, Shillong, Meghalaya Email ¹ wan17math@gmail.com, ² eubahun@gmail.com, ³ bashanlangpariong@gmail.com

Abstract: Mathematics Phobia continues to be the most common obstacle to students' performance and self-efficacy in academic attainment, particularly at secondary level. This research investigates the causes of Mathematics Phobia among Secondary School Students in the Pynursla C&RD Block, with a variety of factors influencing these causes to range from cognitive abilities, social influence, self-concept, teacher support, learning style, textbook dependence, and student experience. Results indicate that the over-dependence on teacher-centred approach—typified by memorization, narrow strategies to problem-solving, and rigid textbook focus—is the overriding factor in the formation of negative mathematics attitudes. Students are also revealed to be incapable of applying mathematical principles to practical situations, a factor further compounded by inadequate basic knowledge and lack of facilities for application-based learning. With teaching material access and motivational schemes, these are in most instances incapable of countering procedural pedagogy dominance. The result is that students record low motivational scores, reduced critical thinking, and heightened anxiety. The research discovers the imperatives of education reform of conceptual understanding, contextualization, and inquiry-based learning. The interventions suggested include extensive teacher professional development and adoption of student-centred, participatory curricula. Implications from the research, although emerging from a particular regional context, find application to countering Mathematics Phobia and improving education performance in similar contexts.

Key Words: Mathematics Phobia, Secondary School Students, Social influence, Self-Concept, Teacher, Teaching Pedagogies, Textbook and syllabus.

1. INTRODUCTION:

Mathematics is widely considered to be a core subject that develops critical thinking, analytical thinking, and systematic problem-solving abilities needed for the explanation of complicated phenomena in science, technology, engineering, economics, and everyday life (Beswick, 2023; OECD, 2025). A strong grasp of mathematics not only accelerates cognitive development but also facilitates active citizenship and career preparedness in an information era (OECD, 2024). Although it is a core subject, mathematics often causes negative emotional reactions from secondary school students, in the form of Mathematics Phobia, that erodes short-term engagement and long-term success (Carey et al., 2023; Foong et al., 2023). This is a widespread trend in India: nearly 82% of Grades VII-X students experience serious anxiety while learning mathematics (Cuemath, 2021). Anxiety increases as students progress through secondary level, especially with the conventional rote-based learning, high-stakes testing, and poor academic support (Shabab, 2023). The performance metrics also show this trend in states like Meghalaya, where the National Achievement Survey (2017) found that the scores of students in mathematics are significantly lower than the national average, with a high rate of students not achieving grade-level expectations (NCERT, 2017).

[Impact Factor: 9.241]

Therefore, the present study has focused on the Pynursla C&RD Block to uncover the multidimensional reasons of Mathematics Phobia among Secondary School Students in this area. Through the different factors, the study will enlighten teachers, policymakers, and community members regarding how to develop positive, interactive mathematics learning environments. Ultimately, it will transform students' fear into confidence and stress the intrinsic value of mathematics.

2. LITERATURE REVIEW:

Mathematics phobia was described as persistent fear that interferes with involvement in quantitative activities, which is brought about by interrelated cognitive, affective, social, and instructional factors (Finell et al., 2022). The review was analyzed on the following themes.

Cognitive aspect:

Fear exhausts mental resources required for multi-step calculation, resulting in slower reaction times and higher rates of error (Ashcraft & Kirk, 2001; Passolunghi et al., 2016). Such lowered performance acts to reinforce fear by entering into a cycle of self-perpetuation. Also, difficulty in retention of formulae, poor conceptual understanding (Swanson & Beebe-Frankenberger, 2004; Geary, 2011) and lack of engagement in creative activities (Mann, 2006; Leikin, 2009) are another critical factor which hinder the effectiveness of Learning Mathematics.

Learner's mathematics self-concept:

Those who think of themselves as "math people" have significantly less anxiety, and negative judgments about the self-enhance it (Kasbi, 2020). Complementary evidence on self-efficacy is that belief in being capable of solving specific problems predicts persistence and success; low self-efficacy accounts for up to half of the variance in anxiety scores (Pajares & Miller, 1994; Meißner et al., 2016). Incremental success experiences and positive feedback therefore immunize against phobia (Skaalvik et al., 2015; Rozgonjuk et al., 2020).

Social influences:

Observational-learning theory argues that students emulate peers' attitudes; disapproving peer comments or public errors can increase anxiety, and supportive peer norms decrease anxiety (Eccles & Wigfield,2002; Whyte & Anthony, 2012; Garba et al., 2021). Gender stereotypes like the idea that boys are naturally more proficient in math disproportionately influence girls' confidence (Boyung & Hardy, 1994). Parental influence is identical: high-anxiety parents pass it on in homework interactions, and positive parental attitudes are responsible for quantifiable decreases in children's anxiety (Gunderson et al., 2012; Vukovic et al., 2013; Maloney et al., 2015; Choi & Han, 2020).

Teacher:

Teachers themselves under stress regarding mathematics resort to traditional, drill-based instruction and eschew exploratory discussion, unconsciously raising student anxiety (Ramirez et al., 2018; Gresham, 2018). Bookish way of teaching and rote memory learning (Skemp, 1976; Hiebert & Grouws, 2007) weaken the confidence of student in Learning Mathematics. Also, it was found that teacher who build warm relationships and prioritize conceptual understanding reduce anxiety and build self-efficacy (Zhang et al., 2024; Palmwood, 2024).

Pedagogy, Textbooks and syllabus:

Timed testing, single-answer testing, and formulaic drill create a performance-over-mastery culture associated with increased anxiety (Seiter, 2017). Constructivist or inquiry-based methods, peer tutoring, and problem-based learning reliably bring about reductions in anxiety and increases in achievement (Morgan, 2003; Furner, 2024). Overly strict rules and poorly structured exercises make anxious students feel lost and more likely to avoid Learning Mathematics (Quintana, 2023). High-stakes testing within such curricula further heightens fear, particularly among slower learner (Zhang et al., 2019).

3. OBJECTIVES:

To find out the causes of Mathematics Phobias among the Secondary School students in Pynursla C&RD Block.

4. METHODOLOGY:

Research Method:

In this present study the descriptive research method was employed.

Population:

[Impact Factor: 9.241]

The study population comprised all Class X students enrolled in secondary schools within the Pynursla C&RD Block, totaling 556 students (Pynursla C&RD Block, 2024).

Sampling Technique:

Stratified simple random sampling technique was used in selection of the sample. The sample was stratified on the basis of sex and school management.

Sample of the Study:

The sample of the study comprised of 170 Class X students from the Secondary School in Pynursla C& RD Block. Table 1 shows the sample to be used for the present study.

Table 1: *Showing the sample of the study*

Types of management	Male students	Female Students	Total
Government aided	35	40	75
Private aided	20	25	45
Private	25	25	50
Total	80	90	170

Tools:

A self-constructed questionnaire was utilized to identify the causes of Mathematics Phobia among Secondary School Students in the Pynursla C&RD Block. The questionnaire comprised six dimensions: cognitive ability, self-concept and social influence, teacher, teaching pedagogies, and textbooks.

Table 2: Distribution of items under the dimension of the Questionnaire

Sl. No.	Dimension	Items	Total		
1	Cognitive ability	4,5,7,8,10	5		
2	Self-concept	12,13,14,16	4		
3	Social influence	1,2,3,6,9,11,15,17	8		
4	Teacher	18,19,21,22,23,24,36,37	8		
5	Teaching Pedagogies	20,25,26,27,28	5		
6	Textbooks	29,30,31,32,33,34,35	7		
Total					

5. Data analysis:

The data collected from the students were analyse as given below:

Table 3: Frequency and Percentage distribution of items in the Ouestionnaire N= 170

C1			e creentage distribution	_ · ~	tionnaire it its		
Sl.	Questions	Responses					
No.							
1	Do you believe		Yes	No			
	that						
	Mathematical		67%	33%			
	ability is an						
	inborn?		(114)	(56)			
2	Do you feel	Strongly	Disagree	Agree	Strongly agree		
	that male	disagree	-				
	students can	16%	28%	27%	29%		
	perform better						
	in	(27)	(48)	(46)	(49)		

ISSN(O): 2456-6683

Sl. No.	Questions	Responses					
110.	Mathematics than female students?						
3	Do you	Always	Sometimes		Rarely	Nev	/er
	prepare mathematics	22%	68%		7%	3%	
	test with enthusiasm?	(37)	(116) (12)		(5)	
4	Do you find		Yes		. ,	No	
	difficulties in		85%			15%	
	understanding mathematical Concepts (eg.Sum of		(144)			(26)	
	angles in a triangle is 1800)?						
5	Do you find		Yes			No	
	difficulties in understanding mathematical		68%			32%	
	ideas (eg.Sum		(116)		(54)		
	of any two sides in a						
	triangle is						
	always greater						
	that the third side)?						
6	Do you	Yes			No		
	practice the sums which		I don't	The	The steps are	Too many	Others
	are done in		understand	steps	too complicated	assignment	
	school at		the concept	are too			
	home?	2007	clearly.	lengthy	7 0 /	120/	7 0 /
		20%	43%	13%	5%	12%	7%
		(34)	(73)	(22)	(9)	(20)	(12)
7	Are you		Yes			No	
	finding difficulties in		64%		36%		
	remembering the		(109)		(107)		
	mathematical formulae?		. ,			· •	
8	Do you find	No	Yes				
	difficulties in tackling	9%	91%				
	mathematical problems?	(15)	(155)				
9	Mathematics is	Strongly	Disagr	ree	Agree	Strongly	y agree
	a burden and stressful	disagree 19%	39% 28% 14%			0/.	
	Subject.	19%	39%	0	28%	14	7/0

ISSN(O): 2456-6683

Sl. No.	Questions	Responses				
		(32)	(66)	(48)	(24)
10	I like to come up with new	Thi	is is true to me	This is a little bit true to me	This is not a	t all true to me
	ways to solve math		18%	57%	25%	
	problems.		(31)	(97)	(42)	
11	Do you believe that ability to	Strongly disagree	Disagree	Agree	Strongly agree	
	excel in mathematics	1%	7%	25%	6	7%
	can be achieve through hard work and consistence	(2)	(12)	(43)	(1	113)
12	one is good in Mathematics	Strongly disagree	Disagree	Agree	Strong	gly agree
	because he/she belongs to	43%	22%	15%	2	0%
	certain Race?	(73)	(37)	(26)	(34)
13	Did anyone tell you that Mathematics is	No	Parents	Yes Sibling	Peers	Community members
	a difficult subject?	5%	15%	27%	39%	14%
		(8)	(26)	(46)	(66)	(24)
14	Do you feel that	Strongly disagree	Disagree	Agree	Strongly agree	
	mathematics is an important	10%	12%	27%	5	1%
	tool that we are using in our day-to-day life?	(17)	(20)	(46)	(87)	
15	Do you agree that	Strongly disagree	Disagree	Agree	Strong	gly agree
	Mathematics is a Subject	21%	13%	39%	2	7%
	which can be treated as an Optional Subject?	(36)	(22)	(66)	(46)	
16	Do your parent	Always	Most of the time	Once in a while	Never	
	encourage you to do well in Mathematics?	60%	28%	7%	5%	
15		(102)	(47)	(12)	(9)	
17	I feel confident when using	Strongly disagree	Disagree	Agree	Strong	gly agree
	mathematics outside the	8%	15%	42%	3	5%
	school.	(14)	(26)	(71)	(59)	

ISSN(O): 2456-6683

Sl. No.	Questions	Responses					
18	Teachers motivates the	Always	Most of the time	Once in a while	Never		
	class before	42%	22%	21%	15%		
	starting a new topic.	(71)	(37)	(36)	(26)		
19	Teachers teaches	Always	Most of the time	Once in a while	Never		
	according to	62%	26%	9%	3%		
	what it is written on the textbook.	(106)	(44)	(15)	(5)		
20	Teachers elaborate	Always	Most of the time	Once in a while	Never		
	abstract	45%	38%	12%	5%		
	concepts by using examples.	(77)	(65)	(20)	(8)		
21	Teachers linked the	Always	Most of the time	Once in a while	Never		
	content taught with day-to-	28%	43%	18%	11%		
	day life.	(48)	(73)	(31)	(18)		
22	Teachers simplify the	3D-Model	Pictorial Chart	Video Demonstration	None of the above		
	difficult topic into simple	32%	38%	18%	12%		
	form by using?	(54)	(65)	(31)	(20)		
23	Teachers encourages to	Always	Most of the time	Once in a while	Never		
	learn Formulae by heart.	69%	17%	9%	5%		
	by neart.	(117)	(29)	(15)	(9)		
24	Teachers encourages to	Always	Most of the time	Once in a while	Never		
	memorize Theorems by	44%	23%	21%	12%		
	heart.	(75)	(39)	(36)	(20)		
25	Teachers explains	Derivation	Explanation	Demonstration	Teaching aids		
	formulae by	61%	30%	5%	4%		
	using	(104)	(50)	(9)	(7)		
26	Teachers	Derivation	Explanation	Demonstration	Teaching aids		
	explains Theorems by	55%	29%	5%	11%		
	using	(94)	(49)	(9)	(18)		
27	Teachers restrict to only	Always	Most of the time	Once in a while	Never		
	one Method	72%	21%	4%	3%		
	for solving a Problem.	(122)	(36)	(7)	(5)		

ISSN(O): 2456-6683

Sl.	Questions	Responses					
No.	Questions			Troop one to			
28	Teachers explain the	Always	Most of the time	Once in a while	Ne	ver	
	practical	24%	25%	37%	14	.%	
	applicability of						
	the	(40)	(43)	(63)	(24)		
	mathematical						
	Content						
	learned with						
	real life						
29	problems. Did the		Vag		No		
29	textbook	Yes No					
	provides an		83%		17%		
	alternatives						
	Method for		(141)		(29)		
	solving a						
	Problem?						
30	Are you able		Yes		No		
	to link the		400/		520/		
	mathematical		48%		52%		
	content that		(81)	(80)			
	you have learned in the		(61)	(89)			
	classroom with						
	the real-life						
	situation?						
31	What are the	Not clea	ar with the concept	Problems solve	No project	Others	
	reasons that	•		in the	work and		
	makes you			classroom are	activities		
	unable to link			not application-			
	the			based			
	mathematical		(20/	problems.	120/	70/	
	content that you have		62%	18%	13%	7%	
	learned in the		(105)	(31)	(22)	(12)	
	classroom with		(103)	(31)	(22)	(12)	
	real life						
	problems?						
32	There are		Yes	No			
	learning gap		110/				
	between the		41%	59%			
	present		(70)		(100)		
	mathematical		(70)		(100)		
	course that you are learning						
	with the						
	previous grade.						
	. 3						
33	You are		Yes		No		
	finding		55%		45%		
	difficulties to		JJ%0		43%		
	tackle with the						

[Impact Factor: 9.241]

Sl.	Questions	Responses						
No.	Questions	ı'						
	present mathematical	(94) (76)			(76)			
	course because							
	you are not							
	clear with the							
	mathematical							
	concept that							
	you have							
	learned in your							
	previous class.							
34	Solves	Strongly	Disagree	Agree	Strongly agree			
	examples	disagree	4407	2224	#4C'			
	provided in the	6%	11%	32%	51%			
	textbook helps	(10)	(10)	(5.4)	(0.7)			
	you for better	(10)	(19)	(54)	(87)			
	understanding and							
	referencing to							
	solve the other							
	mathematical							
	problems.							
35	Words and	Strongly	Disagree	Agree	Strongly agree			
	statements	disagree	C					
	used in your	9%	14%	35%	42%			
	prescribed							
	textbook is	(15)	(24)	(60)	(71)			
	easy for you to							
	understand and							
	follow.							
36	Do teachers	Always	Most of the time	Once in a while	Never			
	provide	55%	34%	5%	6%			
	Solutions to	3370	J + 70	370	U / 0			
	every home assignment	(94)	(57)	(9)	(10)			
	that are given	(27)	(37)		(10)			
	to you?							
37	Do Teachers	Always	Most of the time	Once in a while	Never			
] ,	conduct test	inways	11105t of the time	Shee in a winte	110101			
	after	80%	13%	6%	1%			
	completion of							
	every unit.	(136)	(22)	(10)	(2)			

6. FINDINGS AND DISCUSSIONS:

The findings and discussions have been interpreted and discussed in accordance with the respective dimensions outlined below.

Cognitive ability:

The findings indicate that a considerable percentage of students have problems regarding conceptualization as well as memory in the subject of Mathematics. Specifically, 85% of the Secondary School Students indicate that they experience problems in grasping basic mathematical concepts, while 68% have problems with various mathematical concepts. Additionally, 64% experience problems in remembering formulae. Still, only 9% indicate having a problem in solving mathematical problems, which may suggest a smaller subset with improved problem-solving abilities. Furthermore,

ISSN(O): 2456-6683

[Impact Factor: 9.241]

creative engagement is quite low as only 18% indicate that they enjoy coming up with new approaches to problems, while 82% do not relate to this statement at all.

The findings are in agreement with other research that indicates memory deficit and poor conceptual understanding adversely affect students' performance in Mathematics (Swanson & Beebe-Frankenberger, 2004; Geary, 2011). The comparably small proportion of students suffering from problem-solving difficulty, however, contradicts findings highlighting the critical role conceptual understanding assumes in effective mathematical reasoning (Rittle-Johnson & Schneider, 2015). Such discrepancy can be an indication of excessive reliance on memorization along with procedural strategies. Furthermore, the lack of engagement in creative activities as reported by the students aligns with the existing literature that avers conventional pedagogical strategies are not conducive to mathematical creativity (Mann, 2006; Leikin, 2009). The trends highlight the critical need for teaching strategies that foster cognitive growth, conceptual understanding, and mathematical creative problem-solving.

Social Influence:

The outcome of the present study reveals that 35% of students believe that Mathematics ability is a race issue, while 65% disagree. Only 5% profess never to have been told that Mathematics are difficult, compared with 15% by parents, 27% by siblings, 39% by friends, and 14% by individuals in their communities. An overwhelming 78% majority admit the applicability of mathematics to daily life. Parental encouragement is high: 60% of students are always encouraged by their parents, 28% most often so, 7% sometimes so, and only 5% never so.

Parallel to these findings, recent studies highlight the strong influence of social factors on students' performance and attitude towards mathematics. Reinforcement of stereotypes—that is, the association of mathematical competence with racial identity—has been found to negatively affect motivation and achievement (Steele & Aronson, 1995). Peer and family stories play a key role in the formation of students' attitudes, as derogatory remarks from intimate social groups can effectively erode confidence (Eccles & Wigfield, 2002). High parental support, as observed in the current study, is in line with earlier work indicating such support improves academic self-concept and persistence in the subject of mathematics (Gunderson et al., 2012). Moreover, the framing of mathematics as relevant to daily life has been found to be a powerful predictor of enduring interest (Harackiewicz et al., 2014).

Self-Concept:

The result showed that 67% of the students are of the opinion that maths ability is innate, while 33% disagree. Gender stereotyping is still prevalent since 56% agree or strongly agree that males are good at maths and 44% disagree. Interest in test preparation is moderate: 22% always, 68% sometimes, 7% rarely, and 3% never. Only 20% always practice at home; 43% state unclear concepts, 13% long steps, and 5% complexity as obstacles. Maths is considered heavy and burden for learning by 42%, while 58% do not agree. Amazingly, 94% of them are of the opinion that excellence is due to hard work and practice. On curriculum, 66% opine that maths can be optional, while 34% disagree. Maths usage confidence outside school is high at 77%.

The findings of the present study are in line with previous research that indicates a belief in innate mathematical ability is a fixed mindset, which can deter students' persistence and decrease their interest in the field (Dweck, 2006; Blackwell et al., 2007). Furthermore, long-established gender-based stereotypes are opposite to empirical research providing little gender difference in mathematical ability (Hyde et al., 2008). Moreover, moderate levels of interest with not enough practice might be reflective of a decrease in motivation due to perceived difficulty (Wigfield & Meece, 1988). However, strong belief in effort value and high confidence levels in real-world importance reflect a high sense of self-efficacy, a strong predictor of long-term involvement and academic achievement (Bandura, 1997).

Teacher:

The finding shows that 42% of the teachers report that they frequently encourage the class before introducing new content, and 22% do so in most cases. Strict adherence to prescribed texts is noted, with 62% of teachers typically teaching from prescribed books. The instructional strategies include the use of frequent examples to illustrate abstract concepts (45% always) and making math real by 28% always, and 43% often. In supporting students to comprehend difficult work, teachers use visual aids (38%) and examples in practice (59%). Facilitating memorization is significantly highlighted, with 69% of the students being encouraged often to memorize formulae and 44% theorems. In addition, 55% are regularly given solutions to their homework, and 80% attest that unit tests are given after each stage of teaching.

[Impact Factor: 9.241]

These results are supported by previous research attesting that motivational approaches and practical applications maximize student engagement and facilitate conceptual understanding (Boaler, 1998; van de Walle et al., 2013). Heavy dependence on textbooks and memorization, on the other hand, is a transmission pedagogy that can inhibit the mastery of critical thinking (Skemp, 1976; Hiebert & Grouws, 2007). Though procedures such as frequent testing and offering solution sets can optimize understanding and promote responsibility (Black & Wiliam, 1998), excessive dependence on procedural fluency can stifle conceptual acquisition. Moreover, though the utilization of visual aids and contextual instruction is reflective of constructivist methods (Bruner, 1966), the over-emphasis on memorization suggests an immediate call for pedagogical change towards more inquiry-based and student-centered methods.

Teaching Pedagogies:

The study in this present research discovered that most teachers use the derivation approach to explain theorems (55%) and formulae (61%). Furthermore, explanation and demonstration were also the common strategies used in mathematics teaching in the class. The research also discovered that 72% of teachers always restrict learners to a single approach to problem-solving. Attempts in using mathematical content for real-life applications are extremely limited since only 24% always and 25% frequently use mathematics in resolving everyday problems. Moreover, instructional materials, such as visual models and interactive materials, are also utilized in an effort to support conceptualization.

Previous research confirms the viewpoint that excessive reliance on derivation and demonstration is characteristic of teacher-centered pedagogical models, which, though facilitating procedural knowledge, could be at the expense of student autonomy and critical thinking (Hiebert & Grouws, 2007). Restraint to a single method of problem-solving has been shown to hinder the establishment of adaptive and flexible cognitive abilities (Schoenfeld, 1985). Moreover, the lack of real-world contexts is against constructivist pedagogies, which emphasize much contextually driven learning in fostering relevance and retention (Boaler, 1998).

Textbooks:

The survey shows that 83% of students say their textbooks contain alternative problem-solving strategies, while 77% say the language in these materials is clear and understandable. However, only 48% are able to apply the mathematics content learned in class to practical situations, while 62% say unclear concepts uncovered during lectures are the reason. While 59% do not feel the learning gap between their previous and current study levels, 55% say they are having trouble with their current studies because they do not understand basic concepts learned in previous courses. Also, 83% agree that examples in textbooks aid understanding; however, major issues include, for example, the irrelevance of the syllabus (34%) and the lack of application problems and activities (18%), which prevent effective embedding of mathematical learning into practical situations.

Results from the current study support earlier studies that textbooks with straightforward solution approaches and easy language promote students' understanding and motivation (Boaler, 1998; van de Walle et al., 2013). Yet, lack of conceptual simplicity and applicability in teaching activities undermines successful knowledge transfer (Hiebert & Grouws, 2007). Poor foundational knowledge forms the root of most students' issues, even when learning gaps remain undetected (Black & Wiliam, 1998). Additionally, the lack of application-oriented activities and the feeling of irrelevance in syllabus materials decrease students' capacity to connect mathematics to real-life situations, and hence the need for more contextualized, inquiry-based teaching (Boaler, 1998).

7. Conclusion:

This present study illuminates the complex reasons behind Mathematics Phobia among Secondary School Students in Pynursla C&RD Block. Findings show a reliance on teacher-centred approach, such as rigid stickiness to textbooks and memorization, that transfer procedural knowledge but leave students with little room for autonomy and conceptual understanding. The majority of students are not able to connect Mathematics to real-life situations, being compelled to deal with ineffective learning and absence of application-based learning—issues earlier identified to be the perpetrators of Mathematics Phobia. Despite the use of motivational strategies and instructional materials, the classroom setting remains focused on the transmission of knowledge, creating the illusion that Mathematics is abstract and irrelevant in real life. This issue is augmented by weak foundation knowledge and poor problem-solving strategies, furthering feelings of incompetence and Mathematics Phobia. Additionally, poor application-based exercises deprive students of knowledge about the applicability of Mathematics beyond classroom doors

To eradicate Mathematics Phobia at Pynursla C&RD Block, we must move away from conventional teaching to participative, relevant practices that reassure students and bring Mathematics into everyday life.

ISSN(O): 2456-6683

[Impact Factor: 9.241]

REFERENCES:

Journal Papers:

- 1. Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224–237. https://doi.org/10.1037/0096-3445.130.2.224
- 2. Beswick, K. (2023). Mathematics as a cornerstone for critical thinking. Educational Review, 75(1), 12–29.
- 3. Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5(1), 7–74.
- 4. Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246–263. https://doi.org/10.1111/j.1467-8624.2007.00995.x
- 5. Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for Research in Mathematics Education, 29(1), 41–62.
- 6. Carey, E., Devine, A., & Hill, F. (2023). The impact of mathematics anxiety on students' performance and motivation. Journal of Educational Psychology, 115(3), 345–360. https://doi.org/10.1037/edu0000643
- 7. Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.
- 8. Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53(1), 109–132. https://doi.org/10.1146/annurev.psych.53.100901.135153
- 9. Foong, P. S., Voon, A. S., & Lim, J. (2023). Underlying mechanisms of mathematics anxiety among secondary students. International Journal of Psychology in Education, 35(2), 123–138. https://doi.org/10.1007/s10212-022-00654-1
- 10. Furner, J. M. (2024). Peer tutoring as an intervention to reduce mathematics anxiety and improve achievement. Journal of Educational Interventions, 12(1), 45–60. https://doi.org/10.1080/JEI.2024.0012
- 11. Garba, A. T., Nkereuwem, E. B., & Okechukwu, N. A. (2021). Peer influence and mathematics anxiety among secondary school students. International Journal of Educational Psychology, 10(3), 203–217. https://doi.org/10.1080/IJEP.2021.0045
- 12. Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510
- 13. Geist, E. (2010). Teachers' math anxiety: The problem and what teachers can do about it. The Mathematics Educator, 20(2), 26–30.
- 14. Gresham, G. (2018). Beyond drills and practice: Conceptual teaching to reduce student anxiety in mathematics. Mathematics Teacher Education and Development, 20(1), 78–92.
- 15. Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3-4), 153–166. https://doi.org/10.1007/s11199-011-9996-2
- 16. Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Priniski, S. J., & Hyde, J. S. (2014). Closing achievement gaps with a utility-value intervention: Disentangling race and social class. Journal of Personality and Social Psychology, 108(4), 627–648. https://doi.org/10.1037/pspp0000021
- 17. Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321(5888), 494–495. https://doi.org/10.1126/science.1160364
- 18. Kasbi, F. (2020). Self-concept and mathematics anxiety: The mediating role of academic self-efficacy. Educational Psychology: An International Journal of Experimental Educational Psychology, 40(6), 677–695. https://doi.org/10.1080/01443410.2020.1717652
- 19. Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2015). Intergenerational effects of parents' math anxiety on children's math achievement and anxiety. Psychological Science, 26(9), 1480–1488. https://doi.org/10.1177/0956797615592630
- 20. Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–260. https://doi.org/10.4219/jeg-2006-264
- 21. Meißner, A., Rathgeb-Schnierer, B., & Artelt, C. (2016). The role of mathematics self-efficacy and interest for students' mathematics anxiety and achievement. Learning and Instruction, 42, 1–10. https://doi.org/10.1016/j.learninstruc.2015.10.002
- 22. Morgan, D. N. (2003). Problem-based learning in secondary mathematics classrooms. Journal of Educational Research, 96(2), 103–111.
- 23. Organisation for Economic Co-operation and Development. (2024). Education at a Glance 2024: OECD indicators. OECD Publishing. https://doi.org/10.1787/eag-2024-en
- 24. Organisation for Economic Co-operation and Development. (2025). OECD Skills Outlook 2025: Learning for life. OECD Publishing. https://doi.org/10.1787/skills_outlook-2025-en
- 25. Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193–203. https://doi.org/10.1037/0022-0663.86.2.193
- 26. Palmwood, C. (2024). Enhancing teacher–student relationships to alleviate mathematics anxiety. Teaching and Teacher Education, 115, 104–118. https://doi.org/10.1016/j.tate.2023.104118

INTERNATIONAL JOURNAL OF RESEARCH CULTURE SOCIETY Monthly Peer-Reviewed, Refereed, Indexed Journal

Volume - 9, Issue - 8, August - 2025

ISSN(O): 2456-6683

[Impact Factor: 9.241]

- 27. Passolunghi, M. C., Caviola, S., Perin, C., & Mammarella, I. C. (2016). Mathematics anxiety, working memory, and mathematics performance in secondary-school children. Frontiers in Psychology, 7, 42. https://doi.org/10.3389/fpsyg.2016.00042
- 28. Pelegrina, S., Garcia-Barrera, M. A., & Macizo, P. (2015). Mathematics anxiety: Exploring the role of working memory and gender. Comprehensive Results in Physics, 12, 19–25. https://doi.org/10.1016/j.crhy.2015.03.002
- 29. Quintana, V. (2023). Textbook design and mathematics anxiety: A curriculum perspective. International Journal of Curriculum Studies, 25(4), 402–419. https://doi.org/10.1080/09585176.2023.1889540
- 30. Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford Handbook of Numerical Cognition (pp. 1102–1118). Oxford University Press.
- 31. Rozgonjuk, D., Mößle, T., & Schultchen, D. (2020). Self-efficacy and mathematics anxiety: The role of academic self-concept in secondary students. Educational Psychology, 40(8), 900–914. https://doi.org/10.1080/01443410.2019.1653985
- 32. Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.
- 33. Seiter, C. (2017). Timed tests and mathematics anxiety: A quantitative analysis. Mathematics Education Research Journal, 29(1), 117–132. https://doi.org/10.1007/s13394-016-0185-2
- 34. Shabab, A. (2023). Rote learning and exam pressure: Effects on mathematics anxiety. Indian Journal of Educational Research, 58(1), 45–59.
- 35. Skaalvik, E. M., Federici, R. A., & Klassen, R. M. (2015). Self-efficacy and academic emotions in mathematics: Relations with achievement outcomes. Learning and Individual Differences, 35, 39–45. https://doi.org/10.1016/j.lindif.2014.08.008
- 36. Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, (77), 20–26.
- 37. Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. Journal of Personality and Social Psychology, 69(5), 797–811. https://doi.org/10.1037/0022-3514.69.5.797
- 38. Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96(3), 471–491. https://doi.org/10.1037/0022-0663.96.3.471
- 39. van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2013). Elementary and middle school mathematics: Teaching developmentally. Pearson.
- 40. Vukovic, R. K., Roberts, S. O., & Wright, L. G. (2013). From parental involvement to children's mathematical performance: The role of mathematics anxiety. Early Education and Development, 24(4), 446–467. https://doi.org/10.1080/10409289.2012.712860
- 41. Whyte, B., & Anthony, G. (2012). Peer effects in mathematics anxiety and performance. Educational Psychology in Practice, 28(2), 317–330. https://doi.org/10.1080/02667363.2012.707203
- 42. Wigfield, A., & Meece, J. L. (1988). Math anxiety in elementary and secondary school students. Journal of Educational Psychology, 80(2), 210–216. https://doi.org/10.1037/0022-0663.80.2.210
- 43. Zhang, X., Li, Y., & Liu, J. (2019). High-stakes testing and secondary students' mathematics anxiety: A longitudinal study. Assessment in Education: Principles, Policy & Practice, 26(5), 567–582. https://doi.org/10.1080/0969594X.2019.1627356

Books:

- 44. Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.
- 45. Bruner, J. (1966). Toward a theory of instruction. Harvard University Press.

Chapters in Book:

- 46. Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students' learning. In F. K. Lester Jr. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 371–404). NCTM.
- 47. Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in Mathematics and the Education of Gifted Students (pp. 129–145). Sense Publishers.

Web References:

- 48. Cuemath. (2021). 82% of students from classes 7–10 fear mathematics: Survey. Cuemath. https://www.cuemath.com/resources/math-anxiety-survey-2021
- 49. National Council of Educational Research and Training. (2017). National Achievement Survey (NAS): National report. NCERT. https://ncert.nic.in/pdf/NAS/NATIONAL_REPORT.pdf